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Free-convective flow in the neighbourhood of the upper pole of a heated sphere at high 
Grashof number is considered. Direct buoyancy effects have been studied previously, 
and it is known that the unsteady boundary-layer solution may terminate in singular 
behaviour. For a spatially varying surface temperature, a self-induced pressure 
gradient is present. The effects of this are examined in detail, and it is shown that a 
singular behaviour may again terminate the solution. The competing effects of 
buoyancy and induced pressure gradient are examined to delineate those cases in which 
a steady-state flow is achieved. 

1. Introduction 
In this paper we are concerned with what might be described as mixed free 

convection in the neighbourhood of the upper pole of a heated sphere. The classical 
situation of free convection from a uniformly heated sphere, in which the fluid motion 
arises from the buoyancy forces, has received considerable attention in recent years. 
Potter & Riley (1980) considered the steady flow situation. They calculated the 
boundary-layer flow over the entire sphere and outlined the singular behaviour of the 
converging flow at the upper pole as the fluid erupts into a buoyant plume. An 
important feature of their work is the interpretation of experiment that it afforded, in 
both the boundary layer on the sphere and the plume above it. In a later paper, Brown 
& Simpson (1982) elaborated on the structure of the singular behaviour at the upper 
pole. They also considered the unsteady case of an impulsively heated sphere. From a 
local analysis at the upper pole they showed, by both numerical and analytic means, 
how the thickening boundary layer suddenly erupts to initiate the plume. The eruption 
manifests itself as a singularity in the solution of the boundary-layer equations. 
Subsequently, Awang & Riley (1983) confirmed the predicted behaviour at the upper 
pole by calculating the boundary-layer flow over the whole sphere. 

Mixed convection is usually associated with the interaction between forced 
convection and buoyancy-driven free convection, acting to either reinforce or oppose 
one another, as for example in the early definitive investigation of Merkin (1969). In 
a recent paper, which contains a comprehensive list of references on mixed convection, 
Daniels (1992) considers mixed convection of a slightly different type. A thermally 
stratified fluid flows past an insulated semi-infinite horizontal flat plate. The thermal 
stratification results in a horizontal pressure gradient, and when this opposes the 
motion a singular breakdown of the solution of the boundary-layer equations occurs 
at  a finite distance from the leading edge of the plate. In an earlier paper, Amin & Riley 
(1 990) showed how temperature variations along a horizontal plane boundary would 
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result in a self-induced horizontal pressure gradient. In particular they showed that if 
a temperature distribution that falls away quadratically in space from a given point is 
suddenly imposed on the boundary, the induced pressure gradient drives the fluid 
towards that point and eruption of fluid results, made manifest by a finite-time 
singularity in the boundary-layer solution. In a later paper, Amin & Riley (1995), the 
authors embedded this within a stagnation-point flow and showed, in particular, how 
in this mixed convective situation the singular behaviour could be suppressed. 

At the beginning of this section we alluded to mixed free convection and it is, of 
course, the interaction between buoyancy-driven free convection and convection due 
to a self-induced pressure gradient with which we are concerned. We consider first the 
latter in isolation. We show how the sudden imposition of a suitably varying 
temperature distribution can result in a pressure gradient that forces the flow to 
converge on the stagnation point at the upper pole of a sphere. Again the solution of 
the boundary-layer equations terminates in a singularity which heralds the onset of an 
eruption of fluid from the surface. We analyse this singular behaviour, which differs in 
detail from those previously studied. We then demonstrate that the introduction of 
direct buoyancy can suppress this singular, eruptive behaviour. Similarly we show how 
the buoyancy-driven singular behaviour described by Brown & Simpson (1982) may be 
suppressed by the presence of a suitable induced pressure gradient. 

2. Governing equations 

for a Boussinesq fluid and in the high-Grashof number boundary-layer limit, 
For unsteady, free-convective flow over a heated sphere the equations of motion are, 

a a 
- (u sin x) + - (v sin x) = 0, 
ax ay 

au  au au zp a z U  

a t  ax ay ax ay2 
-+u-+u- = --+--Gr’/58sinx, 

aP 
2Y 

0 = --++cosx, 

ae ae a0 18% -+u-+v- = -- 

In these equations the Grashof number is defined as 

at  ax L ? ~  n a y ~ ’  

(2.1 a )  

(2.1 6) 

(2.1 c) 

(2.1 d )  

where g = (-gcosx, gsinx, 0) is the gravity vector, p is the coefficient of thermal 
expansion such that (p-p,)/p, = P(T- T J ,  with p density, T temperature and a 
subscript 00 denoting conditions in the ambient fluid, a is the sphere radius, v the 
kinematic viscosity, and T,, is a reference temperature. With x measured from the upper 
pole of the sphere, ax measures distance along the surface and aGr-l/’y normal to it. 
With U, = vGrZ”/a as a typical velocity, the velocity components parallel and 
perpendicular to the surface are U,, u and Gr-li5U,, v respectively; the pressure is p,, q p  
and time at/U,. Finally, 6’ is defined as 6’ = ( T -  T=)/(T,,- Tm), and n is the Prandtl 
number. 
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The boundary conditions for equations (2.1) require, if the flow is initiated at t = 0 
by changing the temperature of the boundary from its ambient value, 

(2.3) 

u = v = d = O  for y > O ,  t = 0 ,  

u,d,p+O as y + m ,  t > 0 ,  

u = u = O  for y = O ,  t > 0 ,  

together with a condition on 8, say Ow, at y = 0 for t > 0. This we take as 

0, = Gr-li5bo + b, x', (2.4) 

where b,, b, are constants. The disparate order of magnitude between the two terms of 
(2.4) implies, as we shall see, comparability between direct buoyancy effects, and 
indirect effects in the form of a self-induced pressure gradient parallel to the boundary. 
Following Brown & Simpson (1982) we develop the solution, close to the upper pole 
of the sphere, by writing 

4x9 Y ,  t> = 

V ( X , Y ,  t> = 

p(x ,y ,  t> = 

@(x,y, t> = 
where 

Substituting (2.5) into (2.1), and noting Gr % 1 ,  gives the following set of equations for 
the unknown coefficients, 

2u,+- a00 = 0, 
a? 

together with 
u, = 0, = oi = 0, j > 0, i= 0 ( i =  0,  

U ~ , B ~ , P ~ + - O ,  j- GO, 2 >  0 ( i  = 0,1), 

( 2 . 6 ~ )  

(2.6b) 

(2.6c, d )  

u, = u, = 0, B, = A, 8, = sgnb,, j= 0, t"> 0, 1 

where A = lb11p415b0 is the single parameter that characterizes the flow. 
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3. Solution procedure and results 
We note first that if b, = 0 the problem is that of a uniformly heated sphere as 

considered by Brown & Simpson (1982). The scalings in (2.5) are not, of course, 
appropriate in that case, but the equations studied by Brown & Simpson are recovered 
by settingp, = 8, = 0 in (2.6). For a cooled surface, that is with b, < 0, fluid flows away 
from the stagnation point at the upper pole and the solution evolves to a steady state. 
However for b, > 0 the flow converges onto the stagnation point, and erupts from it 
at a finite time. Such an eruption corresponds to a failure of the boundary-layer 
approximation, with the solution developing a singularity at a finite time. For the case 
b, = 0 the flow is entirely due to the self-induced pressure gradient. From the 
hydrostatic balance ( 2 . 6 ~ )  we have 

and if we make the reasonable assumption that sgn = sgn b, we see that if the 
temperature increases away from the stagnation point the pressure gradient is 
favourable and a steady-state flow will result. However for b, < 0 the induced pressure 
gradient will force fluid towards the stagnation point, and such an accumulation of 
fluid will again result in an eruption, made manifest by the appearance of a singularity 
in the boundary-layer solution at a finite time. It is clear from the above discussion that 
if b,, b, are both non-zero, then whether the solution of (2.6), (2.7) evolves to a steady 
state, or terminates in an eruptive singularity at a finite time, depends upon the delicate 
balance that exists between direct buoyancy and induced pressure gradient effects. 
Before considering that balance we examine in detail the flow due to the self-induced 
pressure gradient when b, =. 0. 

The situation for b, > 0 is not, of itself, of great interest; the unsteady solution 
evolves to the solution of the steady-state equations. For b, < 0 our solution procedure 
is as follows. To accommodate the initial development of the boundary layer we 
introduce the new independent variable 7 = j (  1 + ~ l i 2 / t l i 2 .  When this is introduced 
into (2.6), we set ?= 0 and (2.6e) reduces to an ordinary differential equation which 
yields the pure conduction solution for O,,  with all other variables zero, as the initial 
solution. From this initial state the solution is advanced in time by solving (2.6a, b, c, e )  
sequentially and iteratively as follows. All derivatives are represented by central 
differences, so that the numerical method is essentially of Crank-Nicolson type. At 
each new time step initial estimates for all variables are obtained, either by 
extrapolation from the two previous time levels or, at the first time step, by using the 
initial solution. From ( 2 . 6 ~ )  p , ( ~ ,  i )  is first up-dated, this update of p ,  is then used in 
(2.6b) and the nonlinear equation for u, is solved iteratively; new estimates of ZI,, and 
8, follow from ( 2 . 6 ~ )  and (2.6e) respectively. This sequence of events is followed until 
the changes in all four dependent variables, following a global sweep through the 
equations, fall below some prescribed value, and we may advance a further step in time. 
As with other eruptive boundary-layer situations, in particular the unsteady free- 
convective problem considered by Brown & Simpson (1982), the normal velocity at the 
edge of the boundary layer, uOa, maxluol and the boundary-layer thickness all increase 
indefinitely as the singular point ? = f" is approached, as also do rnaxl8J and maxlpll. 
The rapid increase in these quantities is becoming apparent when ?exceeds about 1.75. 
In all the calculations we report we have taken the edge of the computational domain 
at 7 = = 220, with a step length 87 = 0.01. The step length in time was initially 
S? = 0.005 but for ? > 1.6 this was reduced, to maintain accuracy and to enable as close 
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1 0 2  0-819 lo2 ~1;:'~ i urn lo2 u;; *m m VOW 

1.7460 42.30823 2.364 34.59391 4.286 1717.32334 1.882 
1.7500 58.35377 1.714 49.65310 3.108 3018.10487 1.394 
1.7540 93.27614 1.072 84.25230 1.943 6923.86535 0.895 
1.7580 227.05044 0.440 229.86908 0.796 33977.76529 0.383 

TABLE 1. Variation of u, = max I uo 1 ,  8, = max I B , ] ,  uOm with 2 

an estimate of 2' to be made as possible, to St"= 0.0001. The calculations were 
continued up to t" = 1.7582 beyond which the mesh size and value of rrn were judged 
to be inadequate. A careful examination of the results shows that 2, z 1.761. 
Furthermore, as r = 2,- 2+ 0 the quantities vow T ' ~ " ,  max (Iuolr), max (lO,Irg""),pl(O, or2 
are approaching finite limits, as is 7m,,r718 where vmaz represents either the location of 
maxlu,l or maxl8J. These results are typical of other eruptive situations, but differ in 
detail. A sample of these results is set out in Table 1, and we remark that unit Prandtl 
number has been taken throughout. The behaviour of these quantities is consistent 
with the conjectured limiting forms above, as r + 0. 

To analyse this singular behaviour, as r + 0, in more detail we write 

1, P1 = .-",. f = r S l a j ,  u, = r-l;,, = r-15/8i;o, 0 - r-91aJ 
1 -  

When these variables are introduced into (2.6) we have, retaining only leading-order 
terms, and with s", eliminated 

(3.2a, b )  

( 3 . 2 ~ )  

The solution of these, essentially inviscid, equations results in a velocity of slip at the 
boundary that must be corrected in an inner viscous layer. To determine this we write, 
for f j  6 1, 

21, = a,+ ...) 6, = -2a,q+ ..., p1 = po+plq+ .... (3.3) 

Substituting into (3.2b, c), and setting fj = 0, gives 

a,+a:+2P, = 0, 16a,+9 = 0, 
from which we have 

a, = -9 162 P O  = %' (3.4a, 6) 

The viscous terms of (2.6) will be restored in a region of thickness O(rl/'). Since 
8, = O( 1) in this region variations of p1 across it are, from (2.6c), O(rl/'). This implies 
that the induced pressure gradient is uniform, and O(r-'), in the inner boundary layer. 
Thus we write 

u, = r-la,,, p1 = POT-' ,  v, = r-'/'- v,, j = r1J2r (3.5) 

so that at leading order equations (2.6a, b) give 
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FIGURE 1. With 7 = is-? the quantities U , , ~ ( O , ~ ) T ~ ' ~  = 1.76130), p,(O, 07' (<, = 1.76084) are 
shown for b, < 0, b, = 0. The solution calculated from (2.6) is shown (-.-.-) with the limiting values 
(0) from (3.4b), (3.5) and (3.8); (---) denotes an extrapolation. 

which are to be solved subject to 

uo=c0 = 0, T =  0; #,+a, as 7 - f ~ .  (3.7) 
The numerical solution of (3.6), subject to (3.7), yields 

= -0.2266. 

In figure 1 we plot -r312auo/~jy"lo=o as a function of ?with its limiting value (3.8), and 
also pl(O, f)rz with its limiting value of Po = 0.12305. These limiting forms are clearly 
consistent with our numerical solutions of (2.6), given the uncertainty of the precise 
value of 2,, adding confidence to our proposed solution structure. 

In the above discussion b, = 0, 6, < 0. If b, $. 0, and negative, the direct buoyancy 
force will oppose the self-induced pressure gradient. Indeed if lbol is sufficiently large 
in that case, it will overwhelm the induced pressure gradient. There will be no eruption 
of the boundary layer and a steady state will be established. Similarly, if b, > 0 and 
b, = 0 we know from the work of Brown & Simpson (1982) that an eruption occurs. If 
b, is now increased through positive values, a value will be reached in which the self- 
induced pressure gradient overcomes the direct buoyancy force to yield, again, a steady 
flow directed away from the stagnation point. To find the critical values, more precisely 
the critical value of the parameter A, say A,, in (2.7) we proceed as follows. Forb,  < 0, 
so that sgn b, = - 1, we choose a value of A which is sufficiently large and negative that 
the steady-state form of equations (2.6) yields a solution. We then gradually increase 
the value of A, eventually in increments O( lo-') until the steady-state equations no 
longer yield a solution. For each new value of A the initial estimate required for the 
solution of the nonlinear steady-state equations is taken as the solution for the previous 
value of A. For b, > 0, sgn b, = 1, we have a steady-state solution for h = 0. Proceeding 
as before, increasing h by sufficiently small values, a value is reached beyond which no 
steady-state solution is available. The two critical values so determined are - 1.88 and 
1.15 respectively. Consequently the corresponding critical relationships between b, and 
b, are given by 

b, < 0, b, = - 1.881b,14'5; b, > 0, 6, = 1.151b,14'5. (3.9a, b) 
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FIGURE 2. The variation of the critical value of b, with b, from (3.9). In the region below the critical 
value a steady flow is possible; above it the flow can never achieve a steady state. 

These results are shown in figure 2. Of course, the point b, = b, = 0 is a singular point, 
and the result (3.9a, b) cannot include it. 

4. Conclusions 
There are essentially two mechanisms by which free-convection flows arise. The first, 

and most obvious, is the direct mechanism of buoyancy when a heated surface is 
parallel, or inclined at some angle not close to 90°, to gravity. The second is less 
obvious, and will be present on a differentially heated surface, even when that surface 
is perpendicular to gravity. In that case the free-convective effect is indirect, and relies 
upon the establishment of a pressure gradient parallel to the surface. The interplay 
between this and forced convective flows has been considered by Daniels (1992) and 
Amin & Riley (1995). The present paper is devoted to the rather more subtle interplay 
between the direct and indirect free-convective mechanisms on the near-horizontal 
surface at the upper stagnation point of a heated sphere. From the analysis herein we 
conclude that the two mechanisms may reinforce one another, either leading to an 
eruption of fluid from the boundary layer after a finite time, or a steady state. When 
in competition an eruption or steady state may again occur, depending on the relative 
strengths of the two mechanisms. 
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